- Published on
Translation of Fetal Brain Ultrasound Images into Pseudo-MRI Images using Artificial Intelligence
- Authors
- Name
- Naomi Silverstein
- Name
- Efrat Leibowitz
- Name
- Ron Beloosesky
- Name
- Haim Azhari
- Affiliation
Ultrasound is a widely accessible and cost-effective medical imaging tool commonly used for prenatal evaluation of the fetal brain. However, it has limitations, particularly in the third trimester, where the complexity of the fetal brain requires high image quality for extracting quantitative data. In contrast, magnetic resonance imaging (MRI) offers superior image quality and tissue differentiation but is less available, expensive, and requires time-consuming acquisition. Thus, transforming ultrasonic images into an MRI-mimicking display may be advantageous and allow better tissue anatomy presentation. To address this goal, we have examined the use of artificial intelligence, implementing a diffusion model renowned for generating high-quality images. The proposed method, termed "Dual Diffusion Imposed Correlation" (DDIC), leverages a diffusion-based translation methodology, assuming a shared latent space between ultrasound and MRI domains. Model training was obtained utilizing the "HC18" dataset for ultrasound and the "CRL fetal brain atlas" along with the "FeTA " datasets for MRI. The generated pseudo-MRI images provide notable improvements in visual discrimination of brain tissue, especially in the lateral ventricles and the Sylvian fissure, characterized by enhanced contrast clarity. Improvement was demonstrated in Mutual information, Peak signal-to-noise ratio, Fr\’echet Inception Distance, and Contrast-to-noise ratio. Findings from these evaluations indicate statistically significant superior performance of the DDIC compared to other translation methodologies. In addition, a Medical Opinion Test was obtained from 5 gynecologists. The results demonstrated display improvement in 81% of the tested images. In conclusion, the presented pseudo-MRI images hold the potential for streamlining diagnosis and enhancing clinical outcomes through improved representation.